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 DACSAR (DACSAR-original)
Open to the public

 DACSAR-MC (DACSAR-updated)
* EC/LC model is incorporated;
* Subloading surface;
* Macro element is incorporated;
Open to the public

 DACSAR-3D (3-Dimensional version of DACSAR)
Not open to the public

DACSARs:
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Not open to the public
 DACSAR-F (finite deformation version of DACSAR)

Soil/water coupled elasto-plastic FE based on incremental
finite deformation theory
Not open to the public

 DACSAR-U
Unsaturated soil/water coupled elasto-plastic FE
Not open to the public

 DACSAR-D
Dynamic soil/water coupled elasto-plastic FE
Not open to the public
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Introduction

Origination of report

1-DESCRIPTION of DACSAR
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Program overview



Program overview
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1. Constitutive models employed in DACSAR

2. Singular point on the yielding surface (SO)

3. Yielding Judgment

4. Metastability (SO-EP)

2-Details of theories used in DACSAR
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4. Metastability (SO-EP)

5. Functions

6. Macro element proposed by Sekiguchi et al.

7. Bar, Beam, Joint, Shell element etc.



1.Constitutive models employed
in DACSAR

1.1 Theoretical explanation
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1.1 Theoretical explanation

1.2 Demonstration



1.1 Theoretical explanation

MT Element type

0 Elasto-(visco)plastic plane element

1 Linearly elastic plain element
2 Linearly elastic Beam element
3 Linearly elastic Bar element
4 Elastic perfectly plastic Joint element

Geoenvironmental Risk Assessment Research Group

Constitutive
models are
discussed
here

4 Elastic perfectly plastic Joint element

5 Linearly plastic Shell element

6 Drucker-Prager plane element

7 Hyperbolic plane element

8 Modified Cam-Clay model

9 EC model element

10 LC model element



1.1 Theoretical explanation

Constitutive models used in DACSAR
MT Model type
MT=0 Sekiguchi-Ohta model, includs

(1) SO-EP model
(2) SO-EVP model;
(3) SO-EP with subloading surface model(SOSS model)

MT=1 Linear elastic materials
MT=6 Drucker-Prager model
MT=7 Hyperbolic materials
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MT=8 Modified Cam-Clay model
MT=9 EC model (Exponential contractancy model), includs

(1) EC-EP model
(2) EC-EVP model
(3) EC-EP with subloading surface model(SOSS model)

MT=10 LC model (Logarithmic contractancy model), includs
(1) LC-EP model
(2) LC-EVP model
(3) LC-EP with subloading surface model(SOSS model)



1.1 Theoretical explanation

MT=0, Sekiguchi-Ohta model
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(a) Yield surface of SO-E(V)P model (b) Sketch of subloading surface

Fig1.1 Yield surface of SO model
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1.1 Theoretical explanation

MT=6, Drucker-Prager model
MT=8, Modified Cam-Clay model
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Fig1.2 Yield surface of DP model
in principal stress space

3 

2 

D
ev

ia
to

r
st

re
ss

,q

Effective mean stress, p'

0
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1.1 Theoretical explanation

MT=9, EC model (Exponential contractancy model)
MT=10, LC model (Logarithmic contractancy model)
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Fig1.4 Yield surface of EC model Fig1.5 Yield surface of LC model
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1.2 Demonstration

Case 0 for 1D consolidation for OCR=1

Linear model SO model DP model EC model LC model
1D consolidation

for OCR=1 case 0

Value of parameters
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Value of parameters

Lame’s constant Permeability
 2/

~
cmkg  2/~ cmkg  min/cmk

13.661 6.805 6.0*10-6

Fig1.6 Boundary condition for Case 0



1.2 Demonstration
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Fig1.7(a) Relationship between degree of consolidation and time factor

0.0 0.5 1.01.0

D
eg

re
e

o
f

co
n

so
lid

at
io

n
U

Time factor Tv

0.0 0.5 1.01.0

D
eg

re
e

o
f

co
n

so
lid

at
io

n
U

Time factor Tv

EC model
LC model
Theoretical

EC model
LC model
Theoretical



1.2 Demonstration
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Fig1.7(b) Consolidation Isochrone for Case 0 by using linear elastic model
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1.2 Demonstration

Case (1-1)～(3-19) for the application of different constitutive models
with different value of OCR and different drainage condition

SO- model EC-model LC-model
OCR Drainage

condition EP EVP SS EP EVP SS EP EVP SS

Undrained (1-1) (1-2) (1-3) (1-4) (1-5) (1-6) (1-7) (1-8) (1-9)
1

Fully
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Fully
draind

(1-11) (1-12) (1-13) (1-14) (1-15) (1-16) (1-17) (1-18) (1-19)

Undrained (2-1) (2-2) (2-3) (2-4) (2-5) (2-6) (2-7) (2-8) (2-9)
2

Fully
draind (2-11) (2-12) (2-13) (2-14) (2-15) (2-16) (2-17) (2-18) (2-19)

Undrained (3-1) (3-2) (3-3) (3-4) (3-5) (3-6) (3-7) (3-8) (3-9)
20

Fully
draind (3-11) (3-12) (3-13) (3-14) (3-15) (3-16) (3-17) (3-18) (3-19)



1.2 Demonstration

Three types of tests including plane strain shear,
axisymmetric shear and direct shear

Constitutive model

Undrained condition 0v
Drained condition

Boundary condition

Plane strain shear Axisymmetric shear Direct shear

CIU, CK U, CPD CIU, CK U, CPD
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Fig1.8 Three types of tests
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1.2 Demonstration

Effect of corresponding parameter to some model is considered

Elasto-plastic Elasto-viscoplastic Subloading surface

SO model

EC model
0.1En (SO model)

5.1En   min%1.0az   1m

10m
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0.2En

LC model
5.1Ln

0.2Ln

5.2Ln

  min%01.0az  
10m

100m



1.2 Demonstration

Input parameters

D 0.076 )(kg/cm2
0v  1.0

 0.549 )(kg/cm2
vi  1.0

M 0.961 (1/min)0v 0.001%

v 0.394  0.245

0K 0.65 iK 0.65

Geoenvironmental Risk Assessment Research Group

0K 0.65 iK 0.65

 0.00667 0e 0. 84

①
②

③④

Fig.1.9 One element F.E. mesh
and boundary condition



1.2 Demonstration

Case1-1 SO-EP model for undrained condition with OCR=1
(Same with Case1-3 SO-SS model)
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Fig1.10 Stress-strain relation and effective stress path
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1.2 Demonstration

Case1-2 SO-EVP model for undrained condition with OCR=1
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Fig1.11 Stress-strain relation and effective stress path
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1.2 Demonstration

Case1-4 EC-EP model for undrained condition with OCR=1
(Same with Case1-6 EC-SS model)
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Fig1.12 Stress-strain relation and effective stress path
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1.2 Demonstration

Case1-5 EC-EVP model for undrained condition with OCR=1
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Fig1.13 Stress-strain relation and effective stress path
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1.2 Demonstration

Case1-7 LC-EP model for undrained condition with OCR=1
(Same with Case1-9 LC-SS model)
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Fig1.14 Stress-strain relation and effective stress path
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1.2 Demonstration

Case1-8 LC-EVP model for undrained condition with OCR=1
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Fig1.15 Stress-strain relation and effective stress path
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1.2 Demonstration

Case2-1 SO-EP model for undrained condition with OCR=2
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Fig1.16 Stress-strain relation and effective stress path
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1.2 Demonstration

Case3-1 SO-EP model for undrained condition with OCR=20
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Fig1.17 Stress-strain relation and effective stress path

-0.3

p/p'0

-0.3



(PS)

(AS)

(PS)

(AS)

C.S.L.



1.2 Demonstration

Case3-3 SO-SS model for undrained condition with OCR=20
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Fig1.18 Stress-strain relation and effective stress path
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1.2 Demonstration

Case3-3 SO-SS model for undrained condition with OCR=20
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Fig1.19 Stress-strain relation and effective stress path
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1.2 Demonstration

Case3-3 SO-SS model for undrained condition with OCR=20
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Fig1.20 Stress-strain relation and effective stress path
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1. Constitutive models employed in DACSAR

2. Singular point on the yielding surface (SO)

3. Yielding Judgment

4. Metastability (SO-EP)

2-Details of theories used in DACSAR
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4. Metastability (SO-EP)

5. Functions

6. Macro element proposed by Sekiguchi et al.

7. Bar, Beam, shell element etc.



2. Singular point on the yielding surface
(Takeyama,2007, Doctoral dissertation)

2.1 Explanation of theoretical treatment
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2.1 Explanation of theoretical treatment

2.2 Demonstration



2.1 Theoretical explanation
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Fig 2.1 Singular point on the yield surface of SO model
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2.1 Theoretical explanation

Governing function for the singular point

Koiter’s associated flow rule:
2211
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2.2 Demonstration
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Fig 2.3 Simulation result of effective stress path and e-lnp' relation
near to singular point on the yielding surface of SO model
before coping the singular point
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(a) Effective stress path (b) e-lnp' relation



2.2 Demonstration
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Fig 2.4 Simulation result of effective stress path and e-lnp' relation
near to singular point on the yielding surface of SO model
after coping the singular point

(a) Effective stress path (b) e-lnp' relation



1. Constitutive models employed in DACSAR

2. Singular point on the yielding surface (SO)

3. Yielding Judgment

4. Metastability (SO-EP)

2-Details of theories used in DACSAR
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4. Metastability (SO-EP)

5. Functions

6. Macro element proposed by Sekiguchi et al.

7. Bar, Beam, shell element etc.



3. Yielding Judgment
(Takeyama,2007, Doctoral dissertation)

3.1 Improved Yielding judgment criterion for
SO-EVP, EC-EVP, LC-EVP model

3.2 Corrected Akai & Tamura’s method for spatially
discretization of pore water dissipation
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discretization of pore water dissipation

3.3 1D consolidation (coupled) for Linearly elastic
body by using two types of mesh generations



3.1 Improved Yielding judgment criterion
for SO-EVP, EC-EVP, LC-EVP model

(1) For elastic state
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(2) For elasto-visco-plastic state

Improved judgment criterion

Geoenvironmental Risk Assessment Research Group

(2) For elasto-visco-plastic state








:0
:0




plastic-visco-elasto
elastic



3.1 Improved Yielding judgment criterion
for SO-EVP, EC-EVP, LC-EVP model

For SO-EVP 
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3.1 Improved Yielding judgment criterion
for SO-EVP, EC-EVP, LC-EVP model

Yielding judgment criterion for SO model at the singular point

(1) The stress proceeds on the singular point(figure 1(a))
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(2) The stress gets away from the singular point(figure 1(b))
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3.1 Improved Yielding judgment criterion
for SO-EVP, EC-EVP, LC-EVP model
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3.2 Corrected Akai & Tamura’s method

Fig 3.2 spatial discretization
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Fig3.3 Method for Spatially discretization of pore water dissipation
(consolidation) be corrected
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3.3 1D consolidation by using two types of mesh
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Fig3.4 Simulation of 1-D consolidation by using two types of mesh

0.2vT 

0.1vT 

0.4vT 
0.8vT 

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Time factor T v

D
eg

re
e

of
C

on
so

lid
at

io
n

U Theoretical solution
Simulation

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

y/
H

Normarized excess
pore water pressure p w/pw0

x

y

H

x

y

H

Diagonal mesh



1. Constitutive models employed in DACSAR

2. Singular point on the yielding surface (SO)

3. Yielding Judgment

4. Metastability (SO-EP)

2-Details of theories used in DACSAR

Geoenvironmental Risk Assessment Research Group

4. Metastability (SO-EP)

5. Functions

6. Macro element proposed by Sekiguchi et al.

7. Bar, Beam, shell element etc.



4. Metastability (SO-EP)
(Takeyama,2007, Doctoral dissertation)

4.1 Theoretical explanation
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4.1 Theoretical explanation

4.2 Demonstration



4.1 Theoretical explanation
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For the isotropic consolidated clay, the infinitesimal increment of
stress ratio can induce a rapid plastic shear deformation, which is
called Metastability characteristic (Roscoe et.al. 1963), this stress
state can be called Metastable state.
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4.2 Demontration
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Fig4.2 Simulation results of effective stress path according to
given strain path for the metastable area of SO model
after coping the singular point
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5. Functions
In DACSAR program, the numerical solution of initial boundary-value
problem relies on the finite element method (FEM) based on spatial and time
discretization. For the numerical integration procedures, the integration of
constitutive equation over a time step to calculate the stress and strain
changes corresponding to the change of the displacement is accomplished by
using the algorithm to solve the systems of linear equations.

Systems of linear equations on the relation between nodal force and nodal dispalacement
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Systems of linear equations on the relation between nodal force and nodal dispalacement

δdKΔF 

where,   
e

e
T
e

eep dBCBK
e

, is total stiffness matrix,

LNB e
, is strain matrix, L is differential operator for plain problem,

N is shape function



5. Functions

5.1 Simple explicit method

The integration technique adopted can be classified into
explicit method: Gaussian method
implicit method: Biconjugate gradient stabilized method and

Geoenvironmental Risk Assessment Research Group

5.2 Implicit (iterative) calculation method



5.1 Simple explicit method

FδdK  Total stiffness equations
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Fig5.1 Calculation process of Gaussian method
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5.2 Implicit (iterative) calculation method

Algorithm procedure

Allocate temporary vectors p , p̂ , s , ŝ , t , v , r~

Allocate temporary reals
1r ,

2r , ,  ,

dKFr :

rr ~

For i:=1 step 1 until max_itr do

rrr  ~
1

If i = 1 then rp : else

     21 rr

 vprp  

Implicit (iterative) calculation method (BiCGSTAB)
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 vprp
End if
Solve ( ppM  ˆ )

pKv ˆ

 vrr  ~
1

vrs  
Solve ( ssM  ˆ )

sKt ˆ

   ttst 

spxx ˆˆ  
tsr  

12 rr 
End (i-loop)

Deal locate all temp memory
Return TRUE
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6. Macro element proposed by Sekiguchi,
Shibata,Mimura,Sumikura(1988)

6.1 Explanation of the macro element

6.2 Explanation of input parameters
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6.2 Explanation of input parameters
for the macro element

6.3 Demonstration



Macro element is a big physical domain which
includes foundation area and vertical drain in this
area.

Macro element method is used to predict the post-
construction stress changing and deformation,
especially for the plane strain problem of vertical

6.1 Explanation of the macro element
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especially for the plane strain problem of vertical
drain casting by using the construction method
such as SCP / SD/CVC

The constitutive model of SO, linear elastic, modified
cam-clay, EC and LC can be used.



6.1 Explanation of the macro element
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Fig6.1 Sketch showing the freedom of
excess pore water of a centered
macro element and those of the
adjoining four elements
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6.1 Explanation of the macro element
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Fig6.3 Sketch illustrating the proposed way of considering water flow
across the boundary between the treated and untreated regions
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6.2 Explanation of input parameters
for the macro element

 Model parameters

 Radius of drain

Geoenvironmental Risk Assessment Research Group

 Effective collector radius

 Boundary condition



6.3 Demonstration


~

(kN/m2) ~ (kN/m2) vi  (kPa) iK k (m/day)

1.338 667 9.8 0.65 8.64*10-5

Material parameters for macro element

Case xS ( yS )(m) zS (m) a (m) b (m)

1 2.0 1.0 0.2 1.12838

Three kinds of cases
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2 1.0 1.0 0.1 0.56419
3 1.0 2.0 0.1 0.56419

a2

xS

zS

Vertical drain

Fig6.4 Macro element
model with a vertical drain



6.3 Demonstration

Case1
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Fig6.5 Relation between degree of consolidation
and time factor for macro element
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7. Bar, Beam, shell element etc.
MT Element type Application element is used to represent

2 Linearly elastic Beam element
1. Flexural members in a building frame
2. Columns in a building frame
3. Sheet pile walls

3 Linearly elastic Bar element

1. Reinforcement in reinforced earth structures
2. Tie backs for anchor walls
3. Springs
4. Structural Braces/Struts
1. Interface between soil and rock
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4 Elastic perfectly plastic Joint element

1. Interface between soil and rock
2. Interface between fill and concrete retaining wall
3. Interface between soil and reinforcement in

reinforced earth structures
4. Rock joints/fractures

5 Linearly plastic Shell element

7 Hyperbolic plane element
1. Saturated soil inducing fills and foundation
2. Mass concrete structure
3. Rock

Supporting structure in the ground
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Fig.3-1 Embankment as cycle way in north of Takeo I.C
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Fig.3-2 Sketch for one typical part of the embankment
with its foundation and the boundary conditions
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3-Practical use
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THANKS FOR

Geoenvironmental Risk Assessment Research Group

YOUR ATTENTION


